Monitoring of evapotranspiration using microwave and optical remote sensing observations: rate limiting factors under different climate conditions

Li Jia

RADI – CAS, China
Alterra - WUR, The Netherlands
Outline

• Introduction

• Remote Sensing for Evapotranspiration: algorithms

• Application and requirement

• Summary
Terrestrial Water Cycle
Terrestrial Water Cycle

Simplified Terrestrial Water Balance (from green field geography)
Climate Change Relevance

• “Climate change is expected to intensify the hydrological cycle and to alter ET, but direct observational evidence of a positive trend in global ET is lacking.” (Jung et al., 2010)

Rate ET increased by \(7.1 \pm 1.0\ mm/\text{year/decade}\) for 1982-1997, consistent with expected ‘acceleration’ of hydrological cycle.

Trend becomes negative during 1998-2008 at \(-7.9 \ mm/\text{year/decade}\).
Climate Change Relevance

(Jung et al., 2010)
Basic Concept

• Evapotranspiration (\(ET\)) =
 + Evaporation from bare soil and water surface
 + Transpiration from dry surface of plant
 + Interception (Evaporation from wet surface)
Determining Factors

- **Water supply** (water availability in the soil)
 - Wetness/Dryness of land

- **Water demand** (absorbability of atmosphere)
 - Wetness/Dryness of atmosphere

Jung et al. (2010, Nature): Figure S2. Inferred supply and demand limitation of ET.

A vapor pressure gradient between the evaporating surface and the air.

The rate and quantity of water vapor entering into the atmosphere both become higher in drier air.
Determining Factors

• **Water supply** (water availability in the soil)
 ➔ Wetness/Dryness of land

• **Water demand** (absorbability of atmosphere)
 ➔ Wetness/Dryness of atmosphere

• Sufficient **energy** for phase change (from liquid to vapor)
 ➔ More than half of the solar energy absorbed by land surfaces is used to evaporate water.

• **Aerodynamic forcing** for vapor movement
 ➔ Keep the atmospheric layer above surface unsaturated

• **Plant geometry and physiology:**
 ➔ Total leaf surface area/Plant height
 ➔ Root suction / Stomatal response to environment

Jung et al. (2010, Nature): Figure S2. Inferred supply and demand limitation of ET.
Governing Processes

- ET is a term involving **Surface Energy Balance (SEB)** and **Surface Water Balance (SWB)**

More than 50% of the solar energy absorbed by land surfaces is currently used to evaporate water.

Global land evapotranspiration (ET) returns about 60% of annual land precipitation to the atmosphere.
From remote sensing to ET

SATELLITE OBSERVATIONS

Satellites measure:
Radiation coming up from the earth system (surface + atmosphere)

→ ET
From remote sensing to ET

SATELLITE OBSERVATIONS

Optical remote sensing:
- albedo
- LAI, NDVI, Fc
- LST
- LULC

Microwave remote sensing:
- Surface soil moisture

Radar (and IR):
- Precipitation

Hybrid/multi-sensors:
- Snow cover/snow water equivalent
- Lake area

Satellites measure:
Radiation coming up from the earth system (surface + atmosphere)
From remote sensing to ET

SATELLITE OBSERVATIONS

Optical remote sensing:
- albedo
- LAI, NDVI, Fc
- LST
- LULC

Microwave remote sensing:
- Surface soil moisture

Radar (and IR):
- Precipitation

Hybrid/multi-sensors:
- Snow cover/snow water equivalent
- Lake area

Satellites measure:
Radiation coming up from the earth system (surface + atmosphere)

Land surface fluxes, so to ET, do not have a unique signature/signal that can be remotely detected by satellite sensors, so satellite observations need to be combined to infer them.
Governing Equations

• Surface Energy Balance and Energy partitioning:

\[R_n = H + \lambda E + G_0 \]

\[H = \rho c_p \frac{T_s - T_a}{R_a} \]

\[\lambda E = \frac{\rho c_p}{\gamma} \frac{e_s - e_a}{R_a + R_s} \]

- \(R_n \): net radiation flux
- \(H \): sensible heat flux
- \(\lambda E \): Latent heat flux
- \(G_0 \): soil heat flux

- \(R_a \): aerodynamic resistance
- \(R_s \): surface resistance to vapor

- \(T_a, T_s \): aerodynamic temperature of air and surface

- \(e_a, e_s \): water vapor pressure of air and at evaporating surface

- \(u, u_c \): wind speed at reference height above canopy and at canopy average flow height
Penman-Monteith Equation

Potential evaporation

\[\lambda E_p = \frac{\Delta (R_n - G_0) + \rho_a c_p (e_s - e) r_e^{-1}}{\Delta + \gamma} \]

Maximum Evaporation

\[\lambda E_{\text{max}} = \frac{\Delta (R_n - G_0) + \rho_a c_p (e_s - e) r_e^{-1}}{\Delta + \gamma (1 + r_{i_{\text{min}}} r_e^{-1})} \]

Actual evaporation

\[\lambda E_a = \frac{\Delta (R_n - G_0) + \rho_a c_p (e_s - e) r_e^{-1}}{\Delta + \gamma (1 + r_i r_e^{-1})} \]

Energy constrain

- \(r_i = 0 \)
- \(r_i = r_{i_{\text{min}}} \)
- \(r_i \geq r_{i_{\text{min}}} \)
- \(r_i \rightarrow \infty \)

Available water

- Climatic water requirements
- Optimal water supply
- Limited water supply

Water constrain

- Water stress

G-WADI workshop: Remote Sensing and Eco-hydrology in Arid Regions
16-20 September, 2013, Beijing, China
Remote Sensing of ET

SATELLITE OBSERVATIONS

Optical remote sensing:
- albedo
- LAI, NDVI, Fc
- LST
- LULC

Microwave remote sensing:
- Surface soil moisture

Radar (and IR)
- Precipitation

Governing Equations

\[R_n = H + \lambda E + G_0 \]
\[H = \rho c_p \frac{T_s - T_a}{R_a} \]
\[\lambda E = \frac{\rho c_p}{\gamma} \frac{e_s - e_a}{R_a + R_s} \]

Penman-Monteith Equation

Algorithms/ Models

- **Land Surface Energy Balance (SEB) based methods:**

 H is calculated from LST, LE (ET) is calculated as residual of SEB

- **Combined method: Energy Balance + Plant physiology (Penman-Monteith type):**

 LE is directly calculated from equations involving evapotranspiration processes (P-M)

- **Contextual method + Energy/water balance**

- **Empirical methods: linking surface heat fluxes to relevant atmospheric/surface observations**
Remote Sensing of ET

A: Land Surface Energy Balance (SEB) based methods:

H is calculated from LST:

\[H = \rho C_p \frac{(LST - Tair)}{r_{ah}} \]

\[= f(LST, Tair, windspeed, surface roughness length, atmospheric stability) \]

LE (ET) is calculated as residual of SEB: \[LE = Rn - G0 - H \]

- SEBI (Menenti and Choudhury, 1993)
- SEBAL (Bastiaanssen, 1995)
- SEBS (Su, 2001)
- TSEB (Norman et al, 1995; Jia 2004)
- Etc

Land Surface Temperature (LST): dominant variable

Soil moisture: not involved directly but via implication of LST

Single-source SEB method:
Soil and vegetation are treated as one entity

Dual-source SEB method:
Soil and vegetation are treated separately
Flowchart of Large Scale ET Modeling by SEBS

input

Forcing: Meteorological conditions

RS input

Albedo
NDVI
LAI
Surface temperature

RS/GIS input

Land use map
Vegetation map

Developed by Alterra (ref. Su 2002; Jia et al. 2003)

SEBS model

- SEBI
- Roughness length for momentum z0m
- Roughness length for heat transfer z0h
- MOS
- BAS

output

Instantaneous ET
Vegetation conditions

Daily ET
Gap-filling
Monthly ET
Method A: RS-ET based on SEB

Single-source model

Forcing the inherently 3-D vegetation-soil system to a single layer (source) parameterization of heat and water exchanges with the atmosphere.

Single-source parameterization

Semi-arid environment
(Barrax, Spain, 2004 July)
Method A: RS-ET based on SEB

Single-source model

Error in Sensible Heat Flux due to Uncertainty in Aerodynamic Resistance

Heihe River Basin, north-western China, arid region
Method A: RS-ET based on SEB

Single-source model

Error in Sensible Heat Flux due to Uncertainty in Aerodynamic Resistance

Possible solutions to reduce the error:

Improve Parameterization of resistance for heat transfer using bi-angular satellite observations to capture the thermal anisotropy

ATSR, AATSR (ESA) sensors
(1995 - 2010)

Sentinel-3 (ESA)
(2014 -)
Method A: RS-ET based on SEB

Single-source model

Error in Sensible Heat Flux due to Uncertainty in Aerodynamic Resistance

Possible solutions to reduce the error:

Improve Parameterization of resistance for heat transfer using bi-angular satellite observations to capture the thermal anisotropy

From aerodynamic based algorithm ➔ Thermodynamic based algorithm
Method A: RS-ET based on SEB

Single-source model

Error in Sensible Heat Flux due to Uncertainty in Aerodynamic Resistance

Possible solutions to reduce the error:

Improve Parameterization of resistance for heat transfer using bi-angular satellite observations to capture the thermal anisotropy

From aerodynamic based algorithm \(\rightarrow\) Thermodynamic based algorithm

Resistances from

- Aerodynamic based algorithm
- Thermodynamic based algorithm
Method A: RS-ET based on SEB

Single-source model

Resistance: aerodynamic based vs. thermodynamic based algorithm

Heihe River Basin + Qinghai-Tibetan Plateau, north-western China
Arid, semi-arid, semi-humid region

Sensible Heat Flux estimated from AATSR

Aerodynamic based algorithm

Thermodynamic based algorithm

Frequency (%) vs. k_B^{-1} for 2008-06-02
Method A: RS-ET based on SEB

Single-source model

Resistance: aerodynamic based vs. thermodynamic based algorithm

Heihe River Basin + Qinghai-Tibetan Plateau, north-western China
Arid, semi-arid, semi-humid region

Overestimated over arid/semi-arid region

Sensible Heat Flux

Underestimate ET
Method A: RS-ET based on SEB

Dual-source model

TSEB: with component temperatures resolved from energy balance equation (Norman et al, 1995)

DualN95

Dual-source model with component temperatures retrieved from bi-angular radiance measurements (Jia 2004)

DualJia2004

Reference height above canopy z_{ref}

Reference height within canopy z_0
Method A: RS-ET based on SEB

Energy or water limitations
Remote Sensing of ET (cont.)

B: Combined method: Energy Balance + Plant physiology (Penman-Monteith type):
LE is directly calculated from equations involving evapotranspiration processes (P-M)

\[LE = f(Rn, Tair, windspeed, roughness length, VPD, soil moisture) \]

- Cleugh et al. (2007)
- Running et al. (2008)
- Mu et al. (2007, 2011) - MODIS MOD16 ET products
- Jia et al, 2013 – ET-Monitor
- Etc

Soil moisture: can be explicit dominant variable controlling soil evaporation (via surface soil moisture) and plant transpiration (via root zone soil water content).

LST: implicit or can be neglected on daily time step
MOD16 ET

Method B: RS-ET based on P-M

MOD16 ET

- Land cover, LAI
- Air pressure, air temperature, humidity
- Albedo, FPAR
- Radiation, Air temperature
- Land cover
- Radiation, air temperature

Net radiation to the plant
- Canopy surface
 - Wet canopy surface
 - Canopy transpiration
- Dry canopy surface
 - Plant transpiration
- Canopy conductance
- Scalar
- Moisture soil surface
 - Potential soil evaporation
 - Potential soil evaporation
- Actual soil evaporation
- Soil evaporation

Soil evaporation

Evapotranspiration (ET)

Legend for the evapotranspiration (ET) flowchart

- 8-day, 16-day: Remote Sensing inputs
- Daily: Meteorological inputs
- Daily: Intermediate algorithm calculations
- 8-day, monthly, annual: Final algorithm output

(Mu et al., 2011)
Method B: RS-ET based on P-M

ET-Monitor

Method combining surface energy balance with soil water availability and plant physiology

Input data
- Meteo data
 - Wind speed
 - Air temperature
 - Humidity
 - Radiation
 - Precipitation
 - albedo
 - LAI/NDVI/Fc
 - Soil moisture
 - Land surface temperature
- Satellite data
- LULC
- Soil map

Input variables/parameters
- Actual Evapotranspiration (ETa)
- ET Deficit
- Plant Transpiration
- Soil Evaporation
- Interception

Output maps

Daily 1km, 25km spatial resolution
Method B: RS-ET based on P-M

MOD16 vs ETMonitor

MODIS MOD16 ET

ETMonitor
Method B: RS-ET based on P-M

MOD16 vs ETMonitor

Heihe River Basin, North-western China
Arid/Semi-arid region
Method B: RS-ET based on P-M

Plant physiology based methods (e.g. MODIS ET product MOD16): photosynthesis limited only, no consideration of soil water content
Method B: RS-ET based on P-M

Heihe River Basin in China
ETMonitor 12 years time series (daily, 1km)

ET 2009

ET 2010

ET 2011
Method B: RS-ET based on P-M

Case in The Netherlands
Humid region, high latitude interception is important

2012-05-25, cloudfree day

2012-05-30, rainy day

2012-07-25, cloudfree day
Remote Sensing of ET (cont.)

C: Contextual method + Energy/water balance:

- SSEBI (Roerink et al., 2001)
- Priestly-Taylor Equation + LST-NDVI (Fc) space feature (Jiang and Islam, 1999; Tang et al., 2010)
- Priestly-Taylor Equation + LST-NDVI (Fc) space feature + soil water balance (Miralles, et al. 2011)

\[
LE = \phi \left(R_n - G \right) \frac{\Delta}{\Delta + \gamma}
\]

Scaled in LST-Fc diagram by actual position;

Require “wet” and “dry” pixels in the image;

Similar weather conditions;

Region is flat

\((Tang\ et\ al.\ 2010) \)
Method C: RS-ET from Contexture of LST-Fc

Contexture based method: ET calculation depends on area used to construct the “triangle” space of LST & Fc → changing with the area considered

![Diagram showing triangle of the map and its coefficients](image-url)
Method C: RS-ET from Contexture of LST-Fc

• The diagram of RS_PT method is not only dependent on the size of the area to build the TS-Fc feature space, but also on the ranges of the land surface vegetation cover and soil moisture conditions.

• LST cannot reflect sufficiently the root zone soil moisture conditions
Application Requirements

• Different applications have different requirements on:
 – Spatial resolution
 – Temporal sampling step
 – Accuracy

• At current available satellite sensors, it is difficult to satisfy all user requirements with a single ET product
Drought Monitoring Applications

- 2009 drought in Inner-Mongolia of China

Drought Monitoring Applications

- 2009 drought in Inner-Mongolia of China

```
<table>
<thead>
<tr>
<th>Month</th>
<th>PAP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.6</td>
</tr>
<tr>
<td>2</td>
<td>-0.3</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>0.6</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0.3</td>
</tr>
<tr>
<td>8</td>
<td>0.6</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Evapotranspiration Deficit
July 2009

```

- Evapotranspiration Deficit

```
Evapotranspiration Deficit
July 2009

```

- Evapotranspiration Deficit

```
Evapotranspiration Deficit
July 2009

```

- Evapotranspiration Deficit
Summary

- Processes that control water vapor exchanges with terrestrial objects are complicated (Transpiration, Evaporation, Interception, and more: Sublimation).

- Under different conditions the dominant process is different (energy control or water control), so the parameterization.

- Need to observe the most specific state variables for each process.

- At current available satellite sensors, it is difficult to satisfy all user requirements with a single ET product.
Thank you for your attention!

li.jia@wur.nl